Principles of Dynamic Heterogeneous Catalysis: Surface Resonance and Turnover Frequency Response

M. Alexander Ardagh, Omar A. Abdelrahman, Paul Dauenhauer

Submitted date: 01/03/2019 • Posted date: 01/03/2019
Licence: CC BY 4.0

Acceleration of catalytic transformation of molecules via heterogeneous materials occurs through design of active binding sites to optimally balance the requirements of all steps in a catalytic cycle. In accordance with the Sabatier principle, the characteristics of a single binding site are balanced between at least two transient phenomena, leading to maximum possible catalytic activity at a single, static condition (i.e., a ‘volcano curve’ peak). In this work, a dynamic heterogeneous catalyst oscillating between two electronic states was evaluated to demonstrate catalytic activity as much as three-to-four orders of magnitude (1,000-10,000x) above the Sabatier maximum. Surface substrate binding energies were varied by a given amplitude (0.1 < ΔU < 3.0 eV) over a broad range of frequencies (10^{-4} < f < 10^{11} s^{-1}) in square, sinusoidal, sawtooth, and triangular waveforms to characterize surface dynamics impact on average catalytic turnover frequency. Catalytic systems were shown to exhibit order-of-magnitude dynamic rate enhancement at ‘surface resonance’ defined as the band of frequencies (e.g., 10^{3}-10^{7} s^{-1}) where the applied surface waveform kinetics were comparable to kinetics of individual microkinetic chemical reaction steps. Key dynamic performance parameters are discussed regarding industrial catalytic chemistries and implementation in physical dynamic systems operating above kilohertz frequencies.

File list (2)

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>View on ChemRxiv</th>
<th>Download file</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript_Dauenhauer.pdf</td>
<td>2.03 MiB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supporting Information_Dauenhauer.pdf</td>
<td>2.05 MiB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Principles of Dynamic Heterogeneous Catalysis: Surface Resonance and Turnover Frequency Response

M. Alexander Ardagh1,2, Omar A. Abdelrahman2,3, Paul J. Dauenhauer1,2*

1University of Minnesota, Department of Chemical Engineering and Materials Science, 421 Washington Ave SE, Minneapolis, MN 55455
2Catalysis Center for Energy Innovation, University of Delaware, 150 Academy Street, Newark, DE 19716
3University of Massachusetts Amherst, Department of Chemical Engineering, 159 Goessmann Laboratory, 686 North Pleasant Street, Amherst, MA 01003.
*Corresponding author: hauer@umn.edu

Abstract. Acceleration of catalytic transformation of molecules via heterogeneous materials occurs through design of active binding sites to optimally balance the requirements of all steps in a catalytic cycle. In accordance with the Sabatier principle, the characteristics of a single binding site are balanced between at least two transient phenomena, leading to maximum possible catalytic activity at a single, static condition (i.e., a ‘volcano curve’ peak). In this work, a dynamic heterogeneous catalyst oscillating between two electronic states was evaluated to demonstrate catalytic activity as much as three-to-four orders of magnitude (1,000-10,000\texttimes) above the Sabatier maximum. Surface substrate binding energies were varied by a given amplitude (0.1 < \Delta U < 3.0 eV) over a broad range of frequencies (10-4 < f < 1011 s-1) in square, sinusoidal, sawtooth, and triangular waveforms to characterize the impact of surface dynamics on average catalytic turnover frequency. Catalytic systems were shown to exhibit order-of-magnitude dynamic rate enhancement at ‘surface resonance’ defined as the band of frequencies (e.g., 103-107 s-1) where the applied surface waveform kinetics were comparable to kinetics of individual microkinetic chemical reaction steps. Key dynamic performance parameters are discussed regarding industrial catalytic chemistries and implementation in physical dynamic systems operating above kilohertz frequencies.

Introduction. Heterogeneous catalysis is an integral component of many industrial processes that manufacture food, materials, and energy for a high quality of life1. Catalytic surfaces, pores, and single-atom sites are responsible for accelerating the rates of reactions that protect and provide the most important resources including fuels2, fertilizers3, medicines4, basic chemicals5,6, CO\textsubscript{2} feedstock7, clean air8, and polymers9,10 that would be inaccessible absent catalytic acceleration. In the past century, enhancement of these processes has progressed via increased catalyst selectivity and stability along with increased overall activity for smaller reactors that operate at higher efficiency and lower temperature11.

Catalytic rate enhancement occurs primarily through catalyst design to tune the binding characteristics of surface species and transition states for maximum catalytic turnover frequency12,13,14. In the past two decades, advances in nanostructured materials led to detailed synthesis of atomic-scale active sites that precisely balance the surface substrate binding energies15. The limit of this approach is characterized by the Sabatier principle, which states that the binding of substrates must be neither too strong nor too weak16,17. Quantitative description of the Sabatier principle was captured in Balandin-Sabatier volcano-shaped curves (“volcano curves” for the remainder of the manuscript), which depicted a metric of catalyst activity relative to a descriptor of substrate binding18,19. Balandin depicted volcano-shaped curves in 1960 and 1964 for the dehydration and dehydrogenation of alcohols, with the catalytic
Figure 1. Catalyst Optimization via the Sabatier Principle. A. Surface reaction of A converting to B via transition state with forward activation energy, E_A. B. Volcano plots for the turnover frequency of A-to-B with variable binding energy of A* and B* and variable Brønsted-Evans-Polanyi relationships of E_A to ΔH_e ($0 \leq \alpha \leq 1.0$: 0.2 increments, purple to red). Conditions: perfectly mixed reactor at 150 °C, Y_B ~ 1%. C. Three conditions of surface intermediate binding energy: black (+0.4 eV), red (-0.1 eV, $\alpha = 1.0$), blue (-0.5 eV, $\alpha = 0.2$).

Activity dependent on the bond energies between the alcohol oxygen and the metal oxide catalysts. Since that time, volcano curves have been generated for numerous catalytic chemistries including NO$_x$ decomposition, propylene oxidation, hydrodesulfurization, ammonia synthesis, CO oxidation, and oxygenate decomposition, among many other reactions.

The simplest surface catalytic mechanism of species A reacting to species B depicted in Figure 1A obeys the Sabatier principle regarding adsorption enthalpy (ΔH_A, ΔH_B) and surface reaction activation energy, (E_A). Reactant molecule A adsorbs to the surface as A*, undergoes surface reaction to B*, and then desorbs to gas-phase product B; the overall turnover rate can potentially be limited by any one of these three steps. Reactant adsorption is a fast, barrierless step unless it is combined with surface reactions; a combined step of dissociative adsorption (e.g., N$_2$) is commonly rate limiting on some catalytic materials. The volcano curve therefore results from the sequential kinetics of surface reaction(s) and product desorption, as presented originally by Balandin and depicted in Figure 1B, the transition between surface reaction- and desorption-control exhibits the characteristic ‘volcano’ two-kinetic-regime plot. As depicted in Figure 1C, surface adsorbates desorb slowly on strong-binding materials, while surface reactions occur slowly on weak-binding materials; the kinetic balance of these two steps forms the optimum turnover frequency of the system (i.e., volcano peak) characteristic to materials only exhibiting the optimal binding energy.

The asymmetry of some volcano curves depicted in Figure 1B arise from the relationship between the surface binding energy and the surface reaction activation energy. As described in the Brønsted-Evans-Polanyi (BEP) principle, the activation energy of a catalytic reaction linearly correlates with the surface reaction enthalpy by a linear-scaling parameter, α, and offset of E_0 associated with a reaction class.

$$E_a = \alpha \Delta H_{sr} + E_0 \quad (1)$$

As depicted in Figure 1B, $\alpha \sim 0$ (purple) indicates negligible relationship between the enthalpy of surface reaction and the surface activation energy resulting in a ‘flat’ volcano, while a completely proportional relationship, $\alpha \sim 1.0$ (red), forms a more symmetric volcano curve; values between zero and one form the interspersed curves: blue of $\alpha \sim 0.8$, green of $\alpha \sim 0.6$, yellow of $\alpha \sim 0.4$, and orange of $\alpha \sim 0.2$ all with an offset E_0 of 102 kJ/mole. The linear scaling relationships can be universal and consistent across different molecules, while other chemicals such as formic acid exhibit different linear scaling relationships across different transition metal groups of the periodic table. The Figure 1B set of volcano curves are also defined by the condition that the surface energy of B* changes at twice the rate of the surface energy of A*, which is a ratio.
that can vary between surface chemistries and materials.

Catalyst activity optimization within the context of volcano curves has focused on catalyst design to achieve optimal turnover at the volcano curve apex. Of the existing catalysts and multi-metal combinations, computational screening of the relevant surface-binding descriptors aims to identify single- or multi-descriptor optima from databases of catalytic materials [39,40,41]. Other strategies have aimed to create and tune the properties of new materials including physical and electronic descriptors such as metal spacing and coordination, d-band center and fermi level, and electronic interaction with supports, solvents, and co-adsorbents via multi-metal mixing and/or nanostructured synthesis [42,43,44,45,46,47], all of these approaches have achieved success in creating new materials near the maximum theoretical turnover frequency of a static catalyst.

The limitation of the Balandin-Sabatier maximum arises from the multi-purpose catalyst, which must balance the kinetics of competing reaction steps (activation, desorption, etc.). One strategy to exceed this maximum is to decouple the reaction phenomena and physically disassociate sequential chemistries. The physical reaction dissociation approach was recently demonstrated with ammonia synthesis, whereby gas-phase activation of N_2 occurred via plasma, and metals catalyzed hydrogenation of nitrogen to ammonia with rapid desorption [48,49]. Deconvoluted control of individual reactions (activation with plasma and hydrogenation with a metal catalyst) permits independent system tuning to yield an overall rate potentially in excess of the Balandin-Sabatier maximum in conventional catalytic reactors.

In this work, we will focus on the kinetics of temporally decoupling surface reaction steps via oscillation of the catalytic surface binding energy. As depicted in Figure 2A, the volcano curve can be depicted with its independent slopes extended above the apex (dashed black lines); these represent the potential rates of surface reaction and desorption absent other limitations. In a dynamic system, the surface energy could oscillate between two or more binding energy states, with the oscillation amplitude identified as the total distance in traversed binding energy ($\Delta U \approx \text{eV}$) at the frequency of oscillation ($f \approx \text{s}^{-1}$); in Figure 2A, the volcano plot has a BEP of moderate slope, $\alpha \approx 0.8$, and amplitude (-0.10 to +0.50 eV, $\Delta U \approx 0.60 \text{eV}$).

Figure 2. Dynamic Catalysis – Conditions and Surface Response. A. Transient variation of the catalyst surface ($\alpha = 0.8$) binding between a maximum and minimum binding energy comprises the overall surface amplitude resulting in dynamic performance with optimum (purple) turnover frequency at the reaction resonance frequency. B. The catalyst binding energy changes as a square wave below the resonant frequency ($f = 10 \text{ Hz}$), resulting in maximum and minimum surface coverage of surface intermediate B^* and A^*; loading and unloading of B from the surface produces transient B production rates.

![Figure 2](image-url)
The optimal turnover frequencies are depicted for each state at the given amplitude as purple points, while the minimum turnover frequencies below the static optimum are identified as green points.

The response of the substrate on the catalyst surface depends on the relative dynamics of the system to the kinetics of the surface steps (i.e., reactions, desorption). For a catalyst oscillating between two states as a square waveform with amplitude of ΔU and frequency (f ~ τ⁻¹), the optimum time-averaged turnover frequency will occur when the time scale of each state is approximately the same as the time scale of the individual surface steps. Referred to here as “surface resonance”, the resonant frequencies depicted in Figure 2A permit the surface coverage of B* to vary (θmin < θ0 < θmax) without stabilization before switching surface states.

In this work, the concept of ‘dynamic catalysis’ illustrated in Figure 2A is explored for a broad range of catalyst and dynamic applied conditions to understand the connection between catalyst-system design combinations and catalytic turnover frequency. For BEP relations identified in Figure 1B (0 ≤ a ≤ 1.0), we present the averaged turnover frequency for a broad range of conditions including applied frequency (f), surface energy amplitude (ΔU), and wave shape (e.g. square versus sinusoidal). Optimal performance is then identified with the constraints of practical implementation in mind.

Results and Discussion. The following results were generated computationally using Matlab (see Methods section for more details). Turnover frequencies (TOFs) were calculated at 1% yield of product (B) in all cases for a CSTR reactor setup. TOF_B can be defined as follows,

\[\text{TOF}_B = [B] \frac{\dot{q}}{\text{# of active sites}} \text{[s}^{-1}] \] (2)

where \(\dot{q} \) is the volumetric flow rate through the reactor and [B] is the concentration of component B in the reactor effluent.

The impact of oscillating the surface binding energy of B* with time is depicted in Figures 2B-2D for a square waveform of amplitude ΔU ~ 0.6 eV and frequency of f ~ 10 Hz. The square waveform of surface binding energies of B* depicted in Fig. 2B was simulated for a perfectly mixed reactor operating at 1% yield of B, 150 °C, and 100 bar A inlet. These conditions produce the instantaneous turnover frequency depicted in Fig. 2C which ranges from 3-19 s⁻¹ in a complex oscillating form; the TOF_B achieves a maximum of 19 s⁻¹ soon after the binding energy of B* switches to relatively low energy (BE_B ~ 0.9 eV), while the minimum TOF_B of 3 s⁻¹ occurs just before BE_B switches from 1.5 to 0.9 eV. These turnover frequencies of B are below the predicted resonance frequencies identified in purple in Fig. 2A (~100 s⁻¹). An explanation for the lower-than-expected TOF_B is provided by the surface coverages of Fig. 2C. At 10 Hz, the surface coverage of A* achieves complete oscillation between θ_A ~ 0 and θ_A ~ 1; moreover, the surface coverage of A* stabilizes for a significant fraction of the period of oscillation, indicating a period (~0.02 s) with negligible change in the surface composition of the catalyst. In other words, faster oscillation above 10 Hz of the surface binding energy of B* should more efficiently utilize the catalyst.

The TOF_B of Fig. 2C indicate that the highest rates occur when surface states flip from high to low binding energy of B*. The energetic path leading to this unloading of the surface of B* is depicted in Figure 3A. In the initial strong binding state 1, A adsorbs to the surface as A* and forms a thermodynamic distribution with state B*. When the surface flips to weaker-binding state 2, B* readily desorbs with lower activation energy to form product B. By these two states, the complete cycle can be interpreted as filling of the surface sites (state 1) followed by forced desorption (state 2), the overall rate of which is determined by the surface frequency and amplitude associated with the surface binding energies of the two states.

The impact of the surface state-flipping frequency on the time-averaged turnover frequency is depicted in Figure 3B for fixed square waveform amplitude (ΔU = 0.6 eV). At low frequencies (10⁻⁴ < f < 10⁻² Hz), the average TOF_B is an average of the static conditions of the two states (i.e., a slow catalyst). At the corner frequency (f_c) of ~0.02 Hz, the average turnover frequency begins to increase until the dynamic system eventually matches the optimal turnover frequency of the static system at the volcano apex (depicted in red). Further increasing the surface waveform frequency increases the average turnover frequency until maximizing over a range of dynamic resonance (~10⁻³ < f < ~10⁻¹), identified in Figure 3B in purple. Above the resonance frequency band, the average...
turnover frequency decreases before stabilizing at $2.6 \times 10^{-1} \, \text{s}^{-1}$ at a waveform frequency of $\sim 10^{11} \, \text{Hz}$, the TOF$_B$ associated with optimal conditions of the static system at the volcano curve optimum.

For the volcano curve system depicted in Fig. 2B with amplitude of 0.6 eV square waveform, the instantaneous TOF$_B$ is depicted in Figure 3C for four frequencies: 0.001 Hz in green, 0.25 Hz in red, 10 Hz in blue, and 1,000 Hz in purple. At low frequency (0.001 Hz), the surface coverages of A* and B* (in SI Fig. S2) rapidly respond to the change in surface state, with static operation occurring in either of the two states. Low frequency below f_{C1} results in TOF$_B$ response comparable to a mix of the two low activity states identified in green in Fig. 2A. The unique behavior to the general TOF$_B$ response exists only at the condition of flipping surface states from strong to weak binding of B*; as noted in the highlighted region of Fig. 3C for 0.001 Hz, the TOF$_B$ overshoots, resulting from the unloading of surface B* species into the gas phase as product B. As the waveform frequency increases to 0.25 and 10 Hz, the unloading of B* species from the surface becomes the dominant mechanism leading to catalyst activity. For these two frequencies, the TOF$_B$ and the surface coverages of A* and B* (Fig. S3-S4) are transient for most of the waveform period. At 1,000 Hz in Fig. 3C, the

Figure 3. Activity response of applied oscillating surface binding energy - square waveform. A. Oscillating state energy diagram for A reacting on a catalytic surface to B product (-0.1 to 0.5 eV of B*). B. Average catalytic turnover frequency to product B at waveform amplitude of 0.6 eV at 150 °C and 100 bar; resonance frequencies identified in purple. C. Instantaneous turnover frequency to B for four frequencies at ΔU of 0.6 eV at 150 °C and 100 bar. D. Average turnover frequency to B at 150 °C and 100 bar for variable square waveform amplitude and frequency.
TOF_B and surface coverages of A* and B* (Fig. S5) are always transient; under these conditions TOF_B and surface coverages only minimally oscillate in value (e.g., 0.29 < θ_B < 0.32).

An interpretation of catalytic surface resonance comes from evaluating the TOF_B response of each condition independently, as shown in Fig. 3C. The rate of production for surface species B* is defined by the forward surface reaction rate constant and surface coverage of A* (which is in equilibrium with gas phase A). Similarly, the rate of desorbing B* to gas product B is defined by the desorption rate constant and surface coverage of B*. In this case, the time scales of these two processes sum to the total time scale, which is comparable to the applied square waveform time scale at resonance. This concept is visually observed in Fig. 2A, where TOF_B for the two purple points predict 60 s⁻¹ for each independent process, while the actual TOF_B predicted by simulation is exactly half of that value, 29 s⁻¹ (Fig. 3B and 3C). To put it simply, catalytic surface resonance occurs when the frequency of the applied surface state-switching waveform matches the natural frequency of the catalytic kinetics.

Variation of the surface square waveform amplitude will change the kinetics of the surface chemistry, resulting in a shift of the resonance frequency band. As depicted in the heat map of Fig. 3D, a range of amplitudes (0 < ΔU < 1.0 eV) was evaluated for the volcano curve of Fig. 2A for frequencies varying over 15 orders of magnitude (10⁻⁴ < f < 10¹¹ s⁻¹) to determine the average steady state turnover frequency to B, TOF_B. The steady state system response is oscillatory, so the average TOF was calculated via integration over a range of time after the system reached stable oscillation. For each value of the oscillation amplitude ΔU, the two extreme values of U [eV] corresponding to the two states of the square surface waveform were selected to yield two conditions of equal rate; put simply, each value of ΔU should produce a horizontal line connecting two purple points as in Figure 2A. The variation in surface kinetics with square waveform frequency and amplitude is visually apparent in Figure 3D, where low frequencies below 0.1 Hz are

Ardagh, et al. Page 6
slower (dark blue) than static catalysis for amplitudes greater than 0.1 eV. Alternatively, above ~1 Hz, the average turnover frequency increases dramatically to 10 and 1,000 s⁻¹ per catalytic site for amplitudes above 0.3 eV.

The ability to dynamically accelerate catalytic turnover depends on the energetics of the obtainable states defined by the shape of the volcano curve. Of the many parameters that define the volcano shape, the linear-scaling relationship parameter, α, relating the surface reaction enthalpy to the surface reaction activation energy can dramatically shift the slope of the volcano plot. While Figures 2 and 3 describe a system with α of 0.8, three volcano plots for α of 1.0, 0.4, and zero are shown in Figure 4. For steep volcano plots such as Fig. 4A, extension of the slopes as dashed lines above the volcano apex indicate rapid increase in the turnover frequency for amplitudes of 0.6, 1.0 and 1.5 eV at resonance conditions. This is supported by the catalytic reactor simulation kinetics of Fig. 4B, which considered the catalyst system of Figure 4A at variable applied square waveform frequency ($10^4 < f < 10^{11}$). For a square waveform at an amplitude of 0.6 eV, the resonance frequencies of 10^3 to 10^7 s⁻¹ yield an average turnover frequency to B of about 52 s⁻¹ per catalytic site. At higher amplitudes of 1.0 and 1.5 eV, the average turnover frequency per catalytic site at resonance achieves 2,074 and 2.0×10^5 s⁻¹.

A broader volcano of α of 0.4 in Fig. 4C limits the overall speed achievable for a given amplitude; the purple points above the curve are further apart and at lower turnover frequencies. This translates to lower overall reaction rates at resonance conditions as shown in Fig. 4D. At the extreme case where the activation energy of the surface reaction does not change with the binding energy of an adsorbate such as the volcano curve of Fig. 4E, the potential of dynamic operation is limited as shown in Fig. 4F. There exist at least two cases where the slope of the volcano curve is horizontal on one side as drawn: (1) catalytic systems where the surface reaction enthalpy does not change with the binding energies of the descriptor component (e.g., B*), thus leading to constant surface activation energy of reaction, and (2) systems with α of zero. In these rare cases, the rate of the surface reaction can never be accelerated to match a fast rate of desorption, and the average overall turnover frequency is limited to the rate of the surface reaction.

Applying dynamic operation to heterogeneous catalytic applications will require identifying the conditions of optimal performance in addition to new design variables such as surface waveform shape that can be implemented in real reactor technology. As depicted in Fig. 5A, the sinusoidal surface binding waveform varying from -0.1 to +0.5 eV at frequency of 10 Hz applied to the catalyst system characterized by the volcano plot of Fig. 2A yields oscillatory turnover frequency (Fig. 5B) and surface coverage of A* (Fig. 5C) at 100 bar A inlet, 150 °C, and 1% yield of B. Similar to the case with the square waveform, the turnover frequency of B increases when the applied waveform changes from strong binding of B* to weak binding. At the same time, the surface coverage of A* increases to take the place of the B* that was removed from the surface as desorbed product B. Other considered waveform types including triangle and sawtooth are depicted in Fig. 5D. For all conditions, the square waveform exhibits superior activity at surface resonance conditions. At higher frequencies of 10 and 1,000 Hz, the sinusoidal waveform outperforms the triangle and sawtooth shapes.

Implementation of dynamic operation of heterogeneous catalysts requires the capability to modify the binding energy of surface intermediates with time. Based on the simulations of Figs. 2-5, catalyst and system parameters should be selected to achieve average turnover frequencies above the optimum of static conditions and preferably as high as resonance conditions. This implies that a physical catalyst system must achieve surface waveform amplitudes of at least 0.3 eV (and preferably above 0.5 eV) and operating frequencies above 10 Hz (and preferably 100-1,000 Hz). These performance targets change with the selected surface chemistry, which will likely have more than two surface intermediates exhibiting linear scaling relationships over a broad range ($0.2 < \alpha < 0.8$). The complexity of each catalytic chemistry combined with the large number of dynamic catalysis parameters indicates that each system can be guided by the principles proposed here but will require detailed microkinetic modeling for design and optimization.

Device construction for tuning of the surface intermediate adsorbate binding energy can be interpreted via the electronic state of the catalyst material; surface intermediates such as adsorbed
nitrogen, N*, correlate linearly with the d-band edge/center when compared across a broad range of metals[17,50,51,52]. Temporal variation of metal d-bands exists in at least two categories including electronic and physical (and even electro-mechanical) manipulation. Straining of surfaces has been shown to shift the d-band centers of metals, metal alloys, and other 2D materials[53], which alters the binding energy of adsorbates such as carbon monoxide[54]. When combined with dynamic approaches such as sound waves or piezoelectrics capable of 1% strain oscillation exceeding kilohertz frequencies, this approach can potentially achieve the frequencies and amplitudes required for resonant dynamic catalytic acceleration. Other methods electronically manipulate a catalyst surface including field effect modulation[55,56,57] or non-Faradaic electrochemical modification[58,59,60,61,62], both of which can potentially achieve the frequency and amplitude targets necessary for surface catalytic resonance. Future work will expand the principles developed here to more complex surface chemistries in parallel with implementation in physical catalytic reactors.

Methods. Continuously-stirred tank reactor (CSTR – perfect mixing assumed) models were implemented in Matlab 2017b and Matlab 2018b, using GPU computing resources at the Minnesota Supercomputing Institute (MSI) at the University of Minnesota. See SI section S1 for the full shell and reactor codes, which can be used and modified to reproduce these simulations. The shell code set reactor parameters included the temperature (T), inlet volumetric flow rate (q), catalyst weight (w), and active site loading. Reactor time-on-stream data was generated using the Matlab ODE15s differential equation solver. This solver was selected based on its performance; see SI section S2 for a comparison with Matlab ODE45, ODE23s, ODE23t, and ODE23tb. The set of differential equations consisted of forward and reverse rates for the consumption of gas phase (A, B) and surface species (A*, B*). This general reaction system, A ↔ B, was modeled using three reversible elementary steps: (i) adsorption of A, (ii) conversion of A* to B*, and (iii) desorption of B with a site balance involving *, A*, and B*.

\[
A \overset{1}{\rightarrow} A^* \quad (3)
\]
\[
A^* \overset{4}{\rightarrow} B^* \quad (4)
\]
\[
B^* \overset{5}{\rightarrow} B \quad (5)
\]
\[\text{[Sites]} = [\text{\star}] + [A]^* + [B]^* \]

Generalized forms of the differential equation used for each gas phase and surface species are:

\[\frac{d[A]}{dt} = \frac{\dot{q}}{V} ([A]_{\text{feed}} - [A]) - r_{1,\text{forward}} + r_{1,\text{reverse}} \]

\[\frac{d[A]^*}{dt} = r_{1,\text{forward}} - r_{1,\text{reverse}} + r_{2,\text{forward}} - r_{2,\text{reverse}} \]

Reaction rate equations consisted of rate constants and species concentrations, with each elementary step assumed to be 1st order in all participating reactants. Since this was modeled as a gas phase reaction, adsorption steps were expressed in terms of A and B pressures (bar).

\[r_{\text{ads},i} = k_{\text{ads},i} P_i \]

\[r_{\text{des},i} = k_{\text{des},i} \theta_{i\text{[sites]}} \]

\[r_{\text{surf rxn forward}} = k_{\text{surf fxn forward}} \theta_A \text{[sites]} \]

Rate constants were constructed as Arrhenius expressions using pre-exponential factors and activation energies for adsorption, desorption, and surface reactions\(^{[3]}\). Pre-exponential factors were set to \(10^6\) (bar-s\(^{-1}\)) for adsorption steps and \(10^{13}\) s\(^{-1}\) for surface reaction and desorption steps. These values are typical starting points when fitting microkinetic models to experimental data. Activation energy was set to 0 kJ/mol for adsorption and to the binding energies (BEs) of A and B for their respective desorption steps. The binding energies for A and B, the surface reaction activation energy \(E_a\), and the surface enthalpy of reaction were selected; the base conditions were BE\(_A\) = 1.3 eV, BE\(_B\) = 1.0 eV, \(E_a\) = 102 kJ mol\(^{-1}\), \(\Delta H_{sr} = 0\) kJ/mol, and \(\Delta H_{ovr} = -20\) kJ/mol.

Brønsted-Evans-Polanyi relationships between \(E_a\) and BEs were held at a constant offset (\(E_0\)) of 102 kJ/mol and the slope of the relationship, \(\alpha\), was varied \((0 \leq \alpha \leq 1.0)\). These values fall within previously observed ranges for experimentally derived BEP parameters and resulted in volcano peak TOFs between 0.1-10 s\(^{-1}\). Thus, the activation energy was expressed as a linear function of the surface enthalpy of reaction, \(\Delta H_{sr}\) (i.e., the difference in binding energies between \(A^*\) and \(B^*\) plus the overall enthalpy of reaction from \(A \rightarrow B\)):

\[E_a = \alpha \Delta H_{sr} + E_0 \]

Volcano plots were generated by varying \(\Delta H_{sr}\) and measuring the time-averaged turnover frequency (TOF) at 1.0 % overall yield of B. Turnover frequency was defined as \(\text{TOF} = \frac{\dot{q}}{\text{# of sites}}\) for the CSTR design equation, so in practice \(\dot{q}\) (the gas flowrate [=] L/s) was adjusted until the exit yield of component B was 1.0 %. Variation in the BEP slope \((0 \leq \alpha \leq 1.0)\) resulted in surface reaction activation energies \((25 < E_a < 170\) kJ/mol\) between binding energies of 0.5 and 2.0 eV, which are comparable with a broad range of reactions described in the literature.

Dynamic catalysis was simulated by running ODE15s for a system where BEs varied with time on stream as square, sinusoidal, triangle, or sawtooth waves. Binding energy changes for \(A^*\) and \(B^*\) were specified in the shell code, and these shifts resulted in varying \(\Delta H_{ovr}\) and \(E_a\). Oscillation period/frequency was set by specifying the time duration spent at each condition. Reported TOFs were calculated when the system oscillation was centered on 1.0 % yield of B and after the reactor had achieved oscillatory steady state, defined as a steady time-averaged turnover frequency. Example time on stream data for dynamic catalysis can be found in the supporting information section S4.

Plots of the average turnover frequency as a function of surface binding energy oscillation amplitude and frequency (i.e., heat maps) were generated in Matlab 2018b using the jet color scheme to indicate low and high TOF, ranging from dark blue to dark red. The heat map data consists of a modified Akima cubic Hermite fit through discrete data points calculated at 0-1.0 eV \(\Delta BE\). Data points are tabulated in supporting information section S5. This data was obtained for symmetric dynamic catalysis starting at the volcano peak \((\Delta BE \sim -0.05\) to 0.05 eV\) and oscillating the same amplitude in each direction (from 0-0.75 eV). Data was also obtained for asymmetric dynamic catalysis where the end points were chosen based on extrapolated linear fits of each side of the volcano curve. These lines were set equal with a specified
oscillation amplitude between 0-1.5 eV, and the end points were chosen by drawing a vertical line down to the volcano plot. Frequency response figures were generated for scenarios with varying BEP relationships where the BEP slope ranged from zero to one.

Acknowledgements. We acknowledge financial support of the Catalysis Center for Energy Innovation, a U.S. Department of Energy - Energy Frontier Research Center under Grant DE-SC0001004. The authors acknowledge the Minnesota Supercomputing Institute (MSI) at the University of Minnesota for providing resources that contributed to the research results reported within this paper. URL: http://www.msi.umn.edu

We acknowledge helpful discussions with Professors Turon Birol, Dan Frisbie, Michael Tsapatsis, and Dionisios Vlachos.

Keywords. Catalysis, Sabatier, Dynamics, Frequency, Resonance, Volcano

Supporting Information. Additional information including computer code, time-on-stream data, and simulation methods are included in the supporting information.

Ardagh, et al.

54 M.F. Francis, W.A. Curtin, “Mechanical stress combined with alloying may allow continuous control over reactivity: Strain effects on CO dissociation and subsequent methanation catalysis over Ni(211), Ni3Fe(211), and NiFe(112),” *Journal of Physical Chemistry C* 2017, 121, 6113-6119.

SUPPORTING INFORMATION
Principles of Dynamic Heterogeneous Catalysis:
Surface Resonance and Turnover Frequency Response

M. Alexander Ardgagh1,2, Omar A. Abdelrahman2,3, Paul J. Dauenhauer1,2,*

1University of Minnesota, Department of Chemical Engineering and Materials Science, 421 Washington Ave SE, Minneapolis, MN 55455
2Catalysis Center for Energy Innovation, University of Delaware, 150 Academy Street, Newark, DE 19716
3University of Massachusetts Amherst, Department of Chemical Engineering, 159 Goessmann Laboratory, 686 North Pleasant Street, Amherst, MA 01003.
*Corresponding author: hauer@umn.edu

\# of Figures: 9
\# of Tables: 1
\# of Equations: 0

Table of Contents:

Section S1. Matlab 2017b and 2018b Code
 \begin{itemize}
 \item CSTR Model
 \item Volcano Plot Generator
 \item Dynamic Catalysis Shell Code for Square, Triangle, and Sawtooth Waveforms
 \item Dynamic Catalysis Shell Code for Sinusoidal Waveform
 \end{itemize}

Section S2. Matlab ODE Solver Performance
 \begin{itemize}
 \item ODE45
 \item ODE15s
 \item ODE23s
 \item ODE23t
 \item ODE23tb
 \end{itemize}

Section S3. Static Catalysis Time on Stream Data
 \begin{itemize}
 \item Example at 1 \% Yield of B
 \end{itemize}

Section S4. Dynamic Catalysis Time on Stream Data
 \begin{itemize}
 \item Square Waveform:
 \begin{itemize}
 \item 0.001 Hz
 \item 0.25 Hz
 \item 10 Hz
 \item 1000 Hz
 \end{itemize}
 \item 10 Hz Oscillation Frequency:
 \begin{itemize}
 \item Square Waveform
 \item Sinusoidal Waveform
 \item Triangle Waveform
 \item Sawtooth Waveform
 \end{itemize}
 \end{itemize}

Section S5. Figure 3 Heatmap Data
Section S1. Matlab 2017b and 2018b Code

CSTR Model

% CSTR model
% Description:
% Continuously Stirred Tank Reactor with overall reaction A -> B.
% The number of catalytic active sites is the control.
function xdot=cstr1(t,x)
global T Rg Caf Cbf V u deltE0 q

% Volcano parameters
% Binding energies
BEAeV0 = 1.3; % eV
BEA0 = BEAeV0*96.485e3; % J/gmol
BEBeV0 = 1.0; % eV
BEB0 = BEBeV0*96.485e3; % J/gmol
% Correlation between BE A and BE B
dCorrA = 0.5;
dCorrB = 1;
% Overall reaction enthalpy
dHovr = -20e3; % J/gmol
% BEP relationship parameters
alpha = 0.4;
beta = 102e3; % J/gmol

% Input (1):
% Number of catalytic active sites (gmol)
N = u;

% States (2):
% Concentration of A in CSTR (M)
Ca = x(1,1);
% Concentration of B in CSTR (M)
Cb = x(2,1);
% Number of A* in CSTR (gmol)
Ca_star = x(3,1);
% Number of B* in CSTR (gmol)
Cb_star = x(4,1);

% Parameters:
% Binding energy (J/gmol)
BEa = BEA0 + dCorrA*deltE0;
BEb = BEB0 + dCorrB*deltE0;
% Heat of reaction (J/gmol)
delH1 = -BEa; % A --> A*
delH2 = dHovr + BEa - BEb; % A* --> B*
delH3 = BEb; % B* --> B

% E - Activation energy in the Arrhenius Equation (J/gmol)
R = 8.314459848; % J/gmol-K

Page S2
Eaf1 = 0e3;
Eaf2 = beta + alpha*delH2;
Eaf3 = delH3;

% Pre-exponential factor
Af1 = 1e6; % 1/bar-sec
Af2 = 1e13; % 1/sec
Af3 = 1e13; % 1/sec

% Equilibrium constants
K1 = 1e-7*exp(-delH1/(R*T)); % 1/bar
K2 = 1*exp(-delH2/(R*T)); % unitless
K3 = 1e7*exp(-delH3/(R*T)); % bar

% Rate constants
kf1 = Af1*exp(-Eaf1/(R*T)); % 1/bar-sec
kr1 = kf1/K1; % 1/sec
kf2 = Af2*exp(-Eaf2/(R*T)); % 1/sec
kr2 = kf2/K2; % 1/sec
kf3 = Af3*exp(-Eaf3/(R*T)); % 1/sec
kr3 = kf3/K3; % 1/bar-sec

% Reactant pressure (bar)
Pa = Ca*Rg*T;
Pb = Cb*Rg*T;

% Site balance (gmol)
star = N - Ca_star - Cb_star;
% Surface coverages (unitless)
Theta_a_star = Ca_star/N;
Theta_b_star = Cb_star/N;
Theta_star = star/N;

% Compute xdot:
xdot(1,1) = (q/V*(Caf - Ca) - kf1*Pa*Theta_star*(N/V) + kr1*Theta_a_star*(N/V));
xdot(2,1) = (q/V*(Cbf - Cb) + kf3*Theta_b_star*(N/V) - kr3*Pb*Theta_star*(N/V));
xdot(3,1) = kf1*Pa*Theta_star*N - kr1*Theta_a_star*N - kf2*Theta_a_star*N + kr2*Theta_b_star*N;
xdot(4,1) = - kf3*Theta_b_star*N + kr3*Pb*Theta_star*N + kf2*Theta_a_star*N - kr2*Theta_b_star*N;

Volcano Plot Generator

% Remove size discrepancies
clear

% Step test for Model 1 - CSTR
global T Rg Caf Cbf V u BEA0 BEB0 deltE0 dCorrA dCorrB dHovr alpha beta q

% Input (1):
% Temperature
Tc = 150; % deg C
T = Tc + 273.15; % K
% Feed Pressure (bar)
Paf = 100;
Pbf = 0;
% Ideal Gas Constant (L-bar/K-gmol)
Rg = 8.314459848*10^-2;
% Feed Concentration (M)
Caf = Paf/(Rg*T);
Cbf = Pbf/(Rg*T);

% CSTR Volume
w = 200; % mg-cat
rho = 3.578; % g-cat/mL-cat
V = (w/1000)*(1/rho)*(1/1000); % L-reactor
% Volumetric Flowrate
qs = 160; % mL/min

% Steady State Initial Condition for the Control
u_ss = 0; % gmol sites
% Open Loop Step Change
srho = 20e-6; % gmol sites/g-cat
u = (w/1000)*srho; % gmol sites

% Steady State Initial Conditions for the States
Ca_ss = Caf; % M
Cb_ss = Cbf; % M
Ca_star_ss = 0; % gmol
Cb_star_ss = 0; % gmol
x_ss = [Ca_ss;Cb_ss;Ca_star_ss;Cb_star_ss];
% Startup Time (sec)
ts = 5e13;

% Create TOF matrix
storx = zeros(201,1);
story = zeros(201,1);

% Volcano parameters
% Binding energies
BEAeV0 = 1.3; % eV
BEA0 = BEAeV0*96.485e3; % J/gmol
BEBeV0 = 1.0; % eV
BEB0 = BEBeV0*96.485e3; % J/gmol
% Correlation between BE A and BE B
dCorrA = 0.5;
dCorrB = 1;
% Overall reaction enthalpy
dHovr = -20e3; % J/gmol
% BEP relationship parameters
alpha = 0.4;
beta = 102e3; % J/gmol
% Iterate i
for i = -1:0.01:1
% Binding energy shift
deltE0 = i; % eV
deltE0 = delteV0*96.485e3; % J/gmol

% Iterate at i
for n = 1:inf

% Volumetric Flowrate
q = qs*1.66667e-5; % L/sec
% Spacetime (sec)
taur = V/q;

% Run ODE solver
[t,x] = ode15s('cstr1',[0 ts],x_ss);

% Parse out the state values
Ca = x(:,1); % M
Cb = x(:,2); % M

% Calculate rates
TOF = Cb*q/u; % 1/sec
Effluent = Cb./(Ca + Cb)*100; % Mole percent

% Constrain to 1 percent yield
if abs(1-Effluent(end)) > 0.01
 qs = qs*Effluent(end);
 clear Ca Cb TOF Effluent
else
 j = (i+1)/0.01 + 1;
 storx(round(j)) = i;
 story(round(j)) = TOF(end);
 clear Ca Cb TOF Effluent
 break
end
end
end
end
end
end

% Plot volcano
figure(1)
semilogy(storx,story)

Dynamic Catalysis with Square, Triangle, or Sawtooth Waveforms

% Remove size discrepancies
clear

% Step test for Models 1, 2, and 3 - CSTRs
global T Rg Caf Cbf V u deltaE0 deltaE1 deltaE2 q

% Temperature
Tc = 150; % deg C
T = Tc + 273.15; % K

% Feed Pressure (bar)
Paf = 100;
Pbf = 0;

% Ideal Gas Constant (L-bar/K-gmol)
Rg = 8.314459848*10^-2;

% Feed Concentration (M)
Caf = Paf/(Rg*T);
Cbf = Pbf/(Rg*T);

% CSTR Volume
w = 200; % mg-cat
rho = 3.578; % g-cat/mL-cat
V = (w/1000)*(1/rho)*(1/1000); % L-reactor

% Steady State Initial Condition for the Control
u_ss = 0; % gmol sites

% Open Loop Step Change
srho = 20e-6; % gmol sites/g-cat
u = (w/1000)*srho; % gmol sites

% Startup Time (sec)
ts = 5e1;

% Dynamic catalysis parameters
deltaE0 = 0.04; % eV
deltaE1 = deltaE0*96.485e3; % J/gmol

% Volumetric Flowrate
qs = 160; % mL/min
q = qs*1.66667e-5; % L/sec

% Create empty matrices
x_ss = zeros(4,Nosc);
Ca_ss = zeros(1,Nosc);
Cb_ss = zeros(1,Nosc);
Ca_star_ss = zeros(1,Nosc);
Cb_star_ss = zeros(1,Nosc);

% Steady State Initial Conditions for the States
Ca_ss(1) = Caf; % M
Cb_ss(1) = Cbf; % M
Ca_star_ss(1) = 0; % gmol
Cb_star_ss(1) = 0; % gmol
x_ss(:,1) = [Ca_ss(1);Cb_ss(1);Ca_star_ss(1);Cb_star_ss(1)];

% Run ODE Solver
[t,x] = ode15s('cstr1',[0 ts],x_ss(:,1));

% Parse out the state values
Ca(:,1) = x(:,1); % M
Cb(:,1) = x(:,2); % M
Ca_star(:,1) = x(:,3); % gmol
Cb_star(:,1) = x(:,4); % gmol
star = u - Ca_star(:,1) - Cb_star(:,1); % gmol vacant sites

% Calculate rates
TOF = zeros(size(Cb,1),Nosc);
TOF(:,1) = Cb(:,1)*q/u; % 1/sec
Effluent = zeros(size(Cb,1),Nosc);
Effluent(:,1) = Cb(:,1)./(Ca(:,1) + Cb(:,1))*100; % Mole percent

% Surface coverage (unitless)
Theta_a_star(:,1) = Ca_star(:,1)/u;
Theta_b_star(:,1) = Cb_star(:,1)/u;
Theta_star(:,1) = star(:,1)/u;

% Create time matrix
tshift = zeros(size(t,1),Nosc);
tshift(:,1) = t;

% Create temporary storage
store = zeros(Nosc,5);
store(1,:) = [x(end,:),t(end)];

% Begin dynamic catalysis

for k = 2:Nosc
% Steady State Initial Conditions for the States
Ca_ss(k) = store(k-1,1); % M
Cb_ss(k) = store(k-1,2); % M
Ca_star_ss(k) = store(k-1,3); % gmol
Cb_star_ss(k) = store(k-1,4); % gmol
x_ss(:,k) = [Ca_ss(k);Cb_ss(k);Ca_star_ss(k);Cb_star_ss(k)];

% CSTR Selection
if mod(k,2) == 0 % even step #

% Run ODE solver
[t,x] = ode15s('cstr2',[0 tau1],x_ss(:,k));
% Shift time span
 t = t + store(k-1,5);
 store(k,5) = t(end);

else % odd step #

% Run ODE solver
[t,x] = ode15s('cstr3',[0 tau2],x_ss(:,k));
% Shift time span
 t = t + store(k-1,5);
 store(k,5) = t(end);

end

% Resolving size discrepancies 1

if size(Ca,1) > size(x,1)

store(k,1:4) = x(end,:);
 x = [x;repmat(zeros,size(Ca,1)-size(x,1),size(x,2))];

else

store(k,1:4) = x(end,:);
 Ca = [Ca;repmat(zeros,size(x,1)-size(Ca,1),size(Ca,2))];
 Cb = [Cb;repmat(zeros,size(x,1)-size(Cb,1),size(Cb,2))];
 Ca_star = [Ca_star;repmat(zeros,size(x,1)-size(Ca_star,1),size(Ca_star,2))];
 Cb_star = [Cb_star;repmat(zeros,size(x,1)-size(Cb_star,1),size(Cb_star,2))];
 star = [star;repmat(zeros,size(x,1)-size(star,1),size(star,2))];

end

% Parse out the state values
 Ca(:,k) = x(:,1); % M
 Cb(:,k) = x(:,2); % M
 Ca_star(:,k) = x(:,3); % gmol
 Cb_star(:,k) = x(:,4); % gmol
 star(:,k) = u - Ca_star(:,k) - Cb_star(:,k); % gmol vacant sites

% Resolving size discrepancies 2

if size(TOF,1) > size(Cb,1)

Ca = [Ca;repmat(zeros,size(TOF,1)-size(Ca,1),size(Ca,2))];
 Cb = [Cb;repmat(zeros,size(TOF,1)-size(Cb,1),size(Cb,2))];

else
TOF = [TOF; repmat(zeros, size(Cb, 1) - size(TOF, 1), size(TOF, 2))];
Effluent = [Effluent; repmat(zeros, size(Cb, 1) - size(Effluent, 1), size(Effluent, 2))];

end

% Calculate rates
TOF(:,k) = Cb(:,k)*q/u; % 1/sec
Effluent(:,k) = Cb(:,k)/(Ca(:,k) + Cb(:,k))*100; % Mole percent

% Resolving size discrepancies 3
if size(Theta_a_star, 1) > size(Ca_star, 1)
Ca_star = [Ca_star; repmat(zeros, size(Theta_a_star, 1) - size(Ca_star, 1), size(Ca_star, 2))];
Cb_star = [Cb_star; repmat(zeros, size(Theta_a_star, 1) - size(Cb_star, 1), size(Cb_star, 2))];
star = [star; repmat(zeros, size(Theta_a_star, 1) - size(star, 1), size(star, 2))];
else
Theta_a_star = [Theta_a_star; repmat(zeros, size(Ca_star, 1) - size(Theta_a_star, 1), size(Theta_a_star, 2))];
Theta_b_star = [Theta_b_star; repmat(zeros, size(Ca_star, 1) - size(Theta_b_star, 1), size(Theta_b_star, 2))];
Theta_star = [Theta_star; repmat(zeros, size(Ca_star, 1) - size(Theta_star, 1), size(Theta_star, 2))];
end

% Surface coverage (unitless)
Theta_a_star(:,k) = Ca_star(:,k)/u;
Theta_b_star(:,k) = Cb_star(:,k)/u;
Theta_star(:,k) = star(:,k)/u;

% Correcting time matrix
% Resolving size discrepancies 4
if size(tshift, 1) > size(t, 1)
t = [t; repmat(zeros, size(tshift, 1) - size(t, 1), size(t, 2))];
else
tshift = [tshift; repmat(zeros, size(t, 1) - size(tshift, 1), size(tshift, 2))];
end
tshift(:,k) = t;
end

% End dynamic catalysis
% Clean up data
txls = nonzeros(tshift);
TOFxls = nonzeros(TOF);
Theta_A_starxls = nonzeros(Theta_a_star);
Theta_B_starxls = nonzeros(Theta_b_star);
for p = 1:size(tshift,1)
 for r = 1:size(tshift,2)
 if tshift(p,r) == 0
 Theta_star(p,r) = 0;
 else
 if tshift(p,r) > 0 && Theta_star(p,r) == 0
 Theta_star(p,r) = 1;
 else
 continue
 end
 end
 end
 Theta_starxls = nonzeros(Theta_star);
end
Theta_starxls(Theta_starxls > 0.99) = 0;

% Generate Time Matrix
tsh = tshift - tshift(1,:);
tsh(tsh < 0) = 0;
tshxls = nonzeros(tsh);

% Generate BE shift wave
BEshift = zeros(size(TOF));
% Cleanup Errors
for v = 1:size(TOF,1)
 if tshift(v,1)>0
 BEshift(v,1) = delteV0;
 else
 BEshift(v,1) = 0;
 end
end
for m = 2:size(TOF,2)
 if mod(m,2) == 0
 for n = 1:size(TOF,1)
 if tshift(n,m)>0
 BEshift(n,m) = delteV1;
 else
 BEshift(n,m) = 0;
 end
 end
 end
 else
 for n = 1:size(TOF,1)
 if tshift(n,m)>0
 BEshift(n,m) = delteV2;
 else
 BEshift(n,m) = 0;
 end
 end
 end
end
Dynamic Catalysis with Sinusoidal Waveform

% Remove size discrepancies
clear

% Step test for Models 1 and 2 - CSTRs
global T Rg Caf Cbf V u deltE0 deltE1 deltE2 tau q

% Temperature
Tc = 150; % deg C
T = Tc + 273.15; % K

% Feed Pressure (bar)
Paf = 100;
Pbf = 0;
% Ideal Gas Constant (L-bar/K-gmol)
Rg = 8.314459848*10^-2;
% Feed Concentration (M)
Caf = Paf/(Rg*T);
Cbf = Pbf/(Rg*T);

% CSTR Volume
w = 200; % mg-cat
rho = 3.578; % g-cat/mL-cat
V = (w/1000)*(1/rho)*(1/1000); % L-reactor

% Steady State Initial Condition for the Control
u_ss = 0; % gmol sites
% Open Loop Step Change
srho = 20e-6; % gmol sites/g-cat
u = (w/1000)*srho; % gmol sites

% Startup Time (sec)
ts = 5e1;

% Dynamic catalysis parameters
delteV0 = 0.02; % eV
deltE0 = delteV0*96.485e3; % J/gmol
delteV1 = delteV0 + 0.48; % eV
deltE1 = delteV1*96.485e3; % J/gmol
delteV2 = delteV0 - 0.12; % eV
deltE2 = delteV2*96.485e3; % J/gmol

tau = 5000; % sec
fosc = 1/tau; % 1/sec
tspan = 10*tau; % sec
Nosc = tspan/tau; % Unitless

% Volumetric Flowrate
qs = 160; % mL/min
q = qs*1.66667e-5; % L/sec

% Steady State Initial Conditions for the States
Ca_ss = Caf; % M
Cb_ss = Cbf; % M
Ca_star_ss = 0; % gmol
Cb_star_ss = 0; % gmol
x_ss = [Ca_ss;Cb_ss;Ca_star_ss;Cb_star_ss];

% Run ODE Solver
[t,x] = ode15s('cstr1',[0 ts],x_ss);

% Parse out the state values
Ca = x(:,1); % M
Cb = x(:,2); % M
Ca_star = x(:,3); % gmol
Cb_star = x(:,4); % gmol
star = u - Ca_star - Cb_star; % gmol vacant sites

% Calculate rates
TOF = Cb*q/u; % 1/sec
Effluent = Cb./(Ca + Cb)*100; % Mole percent

% Surface coverage (unitless)
Theta_a_star = Ca_star/u;
Theta_b_star = Cb_star/u;
Theta_star = star/u;

% Begin dynamic catalysis

% Steady State Initial Conditions for the States
Ca_ss2 = Ca(end); % M
Cb_ss2 = Cb(end); % M
Ca_star_ss2 = Ca_star(end); % gmol
Cb_star_ss2 = Cb_star(end); % gmol
x_ss2 = [Ca_ss2;Cb_ss2;Ca_star_ss2;Cb_star_ss2];

% Run ODE solver
[t2,x2] = ode15s('sin_cstr2',[0 ts],x_ss2);

% Parse out the state values
Ca2 = x2(:,1); % M
Cb2 = x2(:,2); % M
Ca_star2 = x2(:,3); % gmol
Cb_star2 = x2(:,4); % gmol
star2 = u - Ca_star2 - Cb_star2; % gmol vacant sites

% Calculate rates
TOF2 = Cb2*q/u; % 1/sec
Effluent2 = Cb2./(Ca2 + Cb2)*100; % Mole percent

% Surface coverage (unitless)
Theta_a_star2 = Ca_star2/u;
Theta_b_star2 = Cb_star2/u;
Theta_star2 = star2/u;

% Shift time matrix
t2s = t2 + t(end);

% End dynamic catalysis

% Clean up data
txls = [nonzeros(t);nonzeros(t2s)];
TOFxls = [nonzeros(TOF);nonzeros(TOF2)];
Theta_A_starxls = [nonzeros(Theta_a_star);nonzeros(Theta_a_star2)];
Theta_B_starxls = [nonzeros(Theta_b_star);nonzeros(Theta_b_star2)];
Theta_starxls = [nonzeros(Theta_star);nonzeros(Theta_star2)];

% Generate BE shift wave

BEshift1 = zeros(size(t));
BEshift1(2:end,1) = delteV0;
BEshift2 = ((delteV2-delteV1)/2)*cos(2*pi*t2/tau) + mean([delteV1,delteV2]);
BEshiftxls = [nonzeros(BEshift1);nonzeros(BEshift2)];
Section S2. ODE Solver Selection and Justification

Matlab ODE solvers were screened using a sinusoidal dynamic catalysis waveform. ODE45 is the recommended solver for general use in Matlab, however, this solver failed to generate a solution after 8 h of continuous computation.

Stats for ODE15s:
3179 successful steps
312 failed attempts
4727 function evaluations
1 partial derivatives
631 LU decompositions
4721 solutions of linear systems
Elapsed time is 1.449973 seconds.

Stats for ODE23s:
10561 successful steps
44 failed attempts
74017 function evaluations
10561 partial derivatives
10605 LU decompositions
31815 solutions of linear systems
Elapsed time is 10.730825 seconds.

Stats for ODE23t:
14214 successful steps
125 failed attempts
21663 function evaluations
45 partial derivatives
1015 LU decompositions
21437 solutions of linear systems
Elapsed time is 4.710374 seconds.

Stats for ODE23tb:
11161 successful steps
92 failed attempts
30658 function evaluations
5 partial derivatives
897 LU decompositions
41881 solutions of linear systems
Elapsed time is 4.704730 seconds.

ODE23s has the least number of failed attempts, but ODE15s performed most efficiently in terms of number of steps and amount of time to generate the solution. Therefore, ODE15s was used throughout this manuscript to solve CSTR equations under static and dynamic catalysis conditions.
Section S3. Time on Stream Data for Static Catalysis

Figure S1. Example of time on stream data generated with ODE15s for a CSTR operating at 1 % yield of B. Reaction conditions: 150 °C, 100 bar A inlet, and a volumetric spacetime of 1 s.
Section S4. Time on Stream Data for Dynamic Catalysis

Section S4.1. Varying Oscillation Frequency with a Square Waveform

Figure S2. Dynamics of 0.001 Hz System. A. Waveform amplitude of -0.1 to +0.5 eV. B. Catalytic turnover frequency of B with time. C. Surface coverage of A* with time. D. Surface coverage of B* with time. E. Surface coverage of open sites with time. Conditions: 150 °C, 100 bar A inlet, ΔU = 0.6 eV, 1% yield of B, CSTR reactor, oscillation frequency 0.001 Hz, Volcano Curve Parameters: α of 0.8 and E₀ of 102 kJ/mol, B* shifts twice as much as A*.
Figure S3. Dynamics of 0.25 Hz System.

A. Waveform amplitude of -0.1 to +0.5 eV. B. Catalytic turnover frequency of B with time. C. Surface coverage of A* with time. D. Surface coverage of B* with time. E. Surface coverage of open sites with time. **Conditions:** 150 °C, 100 bar A inlet, $\Delta U = 0.6$ eV, 1% yield of B, CSTR reactor, oscillation frequency 0.25 Hz. **Volcano Curve Parameters:** α of 0.8 and E_0 of 102 kJ/mol, B* shifts twice as much as A*.
Figure S4. Dynamics of 10 Hz System. A. Waveform amplitude of -0.1 to +0.5 eV. B. Catalytic turnover frequency of B with time. C. Surface coverage of A* with time. D. Surface coverage of B* with time. E. Surface coverage of open sites with time. Conditions: 150 °C, 100 bar A inlet, $\Delta U = 0.6$ eV, 1% yield of B, CSTR reactor, oscillation frequency 10 Hz, Volcano Curve Parameters: α of 0.8 and E_0 of 102 kJ/mol, B* shifts twice as much as A*
Figure S5. Dynamics of 1,000 Hz System. A. Waveform amplitude of -0.1 to +0.5 eV. B. Catalytic turnover frequency of B with time. C. Surface coverage of A* with time. D. Surface coverage of B* with time. E. Surface coverage of open sites with time. Conditions: 150 °C, 100 bar inlet A, ΔU = 0.6 eV, 1% yield of B, CSTR reactor, oscillation frequency 1,000 Hz. Volcano Curve Parameters: α of 0.8 and E₀ of 102 kJ/mol, B* shifts twice as much as A*
Section S4.2. 10 Hz Dynamic Catalysis with Varying Waveforms

Figure S6. Square waveform at 10 Hz. Conditions: A CSTR reactor for A converting to B operating at 1% yield, 150 °C, and 100 bar A inlet. Volcano plot: ΔU ~ 0.6 eV, α ~ 0.8, E₀ of 102 kJ/mol, and B* moves twice as much as A*
Figure S7. Triangle waveform at 10 Hz. Conditions: A CSTR reactor for A converting to B operating at 1% yield, 150 °C, and 100 bar A inlet. Volcano plot: ΔU ~ 0.6 eV, α ~ 0.8, E₀ of 102 kJ/mol, and B* moves twice as much as A*
Figure S8. Sawtooth waveform at 10 Hz. Conditions: A CSTR reactor for A converting to B operating at 1% yield, 150 °C, and 100 bar inlet A. Volcano plot: ΔU ~ 0.6 eV, α ~ 0.8, E₀ of 102 kJ/mol, and B* moves twice as much as A*
Figure S9. Sinusoidal waveform at 10 Hz. Conditions: A CSTR reactor for A converting to B operating at 1% yield, 150 °C, and 100 bar inlet A. Volcano plot: ΔU ~ 0.6 eV, α ~ 0.8, E₀ of 102 kJ/mol, and B* moves twice as much as A*.
Table 1. Heatmap data (TOFs [=] 1/s) for oscillation amplitudes between 0.0-1.0 eV and frequencies between 10^4-10^10 Hz. Volcano parameters: α of 0.8, E_0 of 102 kJ/mol, 150 °C, 100 bar, 1 % yield of product B, and B* shifts twice as much as A*.

<table>
<thead>
<tr>
<th>10^k Hz</th>
<th>0.0 eV</th>
<th>0.1 eV</th>
<th>0.2 eV</th>
<th>0.3 eV</th>
<th>0.4 eV</th>
<th>0.5 eV</th>
<th>0.6 eV</th>
<th>0.7 eV</th>
<th>0.8 eV</th>
<th>0.9 eV</th>
<th>1.0 eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^1 Hz</td>
<td>0.2609</td>
<td>0.2106</td>
<td>0.1397</td>
<td>0.1219</td>
<td>0.1021</td>
<td>0.0779</td>
<td>0.0621</td>
<td>0.0465</td>
<td>0.0289</td>
<td>0.0216</td>
<td>0.0174</td>
</tr>
<tr>
<td>10^2 Hz</td>
<td>0.2609</td>
<td>0.2106</td>
<td>0.1442</td>
<td>0.1219</td>
<td>0.1021</td>
<td>0.0808</td>
<td>0.0621</td>
<td>0.0403</td>
<td>0.0289</td>
<td>0.0216</td>
<td>0.0181</td>
</tr>
<tr>
<td>10^3 Hz</td>
<td>0.2609</td>
<td>0.2656</td>
<td>0.1407</td>
<td>0.1219</td>
<td>0.1021</td>
<td>0.0808</td>
<td>0.0617</td>
<td>0.0556</td>
<td>0.0364</td>
<td>0.0325</td>
<td>0.0293</td>
</tr>
<tr>
<td>10^4 Hz</td>
<td>0.2609</td>
<td>0.2656</td>
<td>0.1407</td>
<td>0.1219</td>
<td>0.1021</td>
<td>0.0808</td>
<td>0.0617</td>
<td>0.0556</td>
<td>0.0364</td>
<td>0.0325</td>
<td>0.0293</td>
</tr>
<tr>
<td>10^5 Hz</td>
<td>0.2609</td>
<td>0.2972</td>
<td>0.4505</td>
<td>0.7468</td>
<td>0.8541</td>
<td>0.9143</td>
<td>1.001</td>
<td>1.139</td>
<td>1.288</td>
<td>1.541</td>
<td>2.366</td>
</tr>
<tr>
<td>10^6 Hz</td>
<td>0.2609</td>
<td>0.4149</td>
<td>0.9343</td>
<td>2.231</td>
<td>4.321</td>
<td>7.425</td>
<td>8.030</td>
<td>8.721</td>
<td>9.325</td>
<td>13.26</td>
<td>28.00</td>
</tr>
<tr>
<td>10^7 Hz</td>
<td>0.2609</td>
<td>0.4202</td>
<td>0.9620</td>
<td>2.371</td>
<td>5.818</td>
<td>12.81</td>
<td>26.88</td>
<td>49.68</td>
<td>90.94</td>
<td>120.1</td>
<td>152.9</td>
</tr>
<tr>
<td>10^8 Hz</td>
<td>0.2609</td>
<td>0.4203</td>
<td>0.9632</td>
<td>2.385</td>
<td>5.611</td>
<td>13.04</td>
<td>29.08</td>
<td>65.08</td>
<td>142.4</td>
<td>296.3</td>
<td>542.5</td>
</tr>
<tr>
<td>10^9 Hz</td>
<td>0.2609</td>
<td>0.4203</td>
<td>0.9634</td>
<td>2.383</td>
<td>5.618</td>
<td>13.05</td>
<td>29.43</td>
<td>65.38</td>
<td>144.0</td>
<td>315.9</td>
<td>690.5</td>
</tr>
<tr>
<td>10^{10} Hz</td>
<td>0.2609</td>
<td>0.3990</td>
<td>0.9550</td>
<td>2.383</td>
<td>5.616</td>
<td>13.05</td>
<td>29.43</td>
<td>65.39</td>
<td>144.2</td>
<td>316.6</td>
<td>693.1</td>
</tr>
<tr>
<td>10^{11} Hz</td>
<td>0.2609</td>
<td>0.2750</td>
<td>0.3364</td>
<td>0.8856</td>
<td>4.947</td>
<td>13.01</td>
<td>29.43</td>
<td>65.39</td>
<td>144.2</td>
<td>316.7</td>
<td>693.9</td>
</tr>
<tr>
<td>10^{12} Hz</td>
<td>0.2609</td>
<td>0.2609</td>
<td>0.2613</td>
<td>0.2667</td>
<td>0.2833</td>
<td>0.3799</td>
<td>3.078</td>
<td>59.92</td>
<td>144.0</td>
<td>316.7</td>
<td>694.0</td>
</tr>
<tr>
<td>10^{13} Hz</td>
<td>0.2609</td>
</tr>
<tr>
<td>10^{14} Hz</td>
<td>0.2609</td>
</tr>
</tbody>
</table>